2008年3月1日 星期六

瑞典JAS-39鉤喙獸戰鬥機

by Toga
  西元1976年間,瑞典紳寶集團開始研發一款用於取代現役Sk-60的次音速輕型教練攻擊機計畫~B3LA;然而到了1979年二月,這款設計與用途性能約 略與日後義巴合作的AMX相當的次音速輕型教練攻擊機計畫被瑞典空軍以價格過於高昂為由給打了回票,使得紳寶戰機工業集團一時之間身陷絕境:除了維京戰機 升級計畫之外,再無其他工作可接。
  然而天無絕人之路,亦是在西元1979年,瑞典空軍開始重新研究檢討其未來戰機配備需求,自二次大戰之 後到1970年代間,瑞典靠著自力更生,一連開發出四代噴射戰機,雖然代代皆一時之選,成果輝煌得令人刮目相看,但是其開發購置與操作維修成本也是代代水 漲船高,令其越來越吃不消;瑞典空軍研究結果指出:其下一代主力戰機必須是款輕型單發,卻能勝任負擔戰鬥,攻擊,與偵查任務的多用途機種,其預算方可能負擔得起。
####
  1980年三月,瑞典政府批準瑞典空軍的次世代戰機需求計畫,但是堅持必需把自製計畫與外購方案同時列入考量與競標中,為了抵抗 外侮,瑞典各大軍事工業集團~ Saab-Scania, Volvo-Flygmotor, Ericsson Radio Systems and FFV聯手組成JAS工業團隊,並發揮驚人的工作效率:1981年年初軍方的需求意向書正式送達,到了1981年6月1日,工業團隊的設計研究結果,代號 Saab 2110的設計方案便呈送給軍方,瑞典空軍對此方案大為滿意,到了1982年6月30日便下單採購五架JAS-39原型機與JAS-39 A/B初期量產戰機,並於同年九月正式賜名為GRIPEN(鹫面獅,哈利波特在其身上表演鐵達尼姿勢的神話怪物)~放眼當時歐美各國的次世代戰機都還在紙 上談兵或大打口水戰的階段,而瑞典空軍則已經正式下單採購量產戰機,GRIPEN輕巧簡單所帶來的時程優勢在此展露無遺。

紳寶集團在GRIPEN戰機上同時採取許多先進與成熟廉價低風險兼顧的科技設計,例如:

1. 美商李耳集團製的全權三重線傳飛控(不如EF-2000與Rafale上的四重光纖飛控先進,但好處是成熟可靠且廉價,經國號的飛控系統據說亦是從此衍生而來) + 近接主翼全動式前翼 + 世上第一架先天機體不穩定設計(瑞典佬聲稱)。

2. 能在瑞典BAS 90分散式前線公路基地網路服勤操作,且後勤成本與照顧人力需求盡可能被降至最低。

3. 為減低機體重量而採用了30%的複合材料,但是又為了節省成本而不用質輕但價昂的鋁鋰合金。

4. 引擎動力方面捨棄與美商蓋瑞特聯合研發TFE系列引擎動力之方案,改採自成熟可靠的奇異集團F404-GE-400渦扇引擎衍生而來的RM12發動機(而 蓋瑞特集團的未熟設計後來則由肖想F404不到的台灣接手投資,最後成為經國號戰機的動力源~從某種角度觀點而言,小經經和小潘潘還真是需求用途相似,共 用飛控,換穿引擎的好姐妹..........)。

5. Ericsson開發的PS-05A脈波都卜勒雷達,重量156公斤(天線重25公斤),MTBF時數170小時以上,對於一般戰機大小(RCS = 5m2)空中目標的有效偵測距離約120公里,能追14打4,算得上一款上中水準的現代化機械掃瞄雷達;其上大量採用源生自號稱當時歐洲最強的戰機火控雷 達~英國藍雌狐上的部件,而得以兼顧性能需求與系統成熟度。

6. 三具Ericsson製EP-17單色MFDs, 廣角Head-Up Display, HOTAS, D80任務電腦等現代戰機基本玻璃座艙需求,雖然隨著時代演進,此一座艙顯示配備開始落伍,但是瑞典佬隨即以數次升級計畫將其全面換新成最頂級配備,使得 今日的JAS-39 C/D擁有超英破法,號稱足以和美帝猛禽分庭抗禮的航電座艙科技。

7. 使用馬丁貝克 S10LS 零零彈射椅,這是瑞典第一架放棄使用自製彈射椅的自製戰機。


紳 寶集團於1986年將JAS-39的最終設計定案,1987年4月26日,一號原型機JAS 39-1在Linköping正式出廠面世,並於1998年12月9日順利進行首飛;然而第一次衝擊於不久後到來:1989年2月9日,一號原型機因為飛 控設計缺陷,在第六次試飛時滑出跑道失控墜毀(飛行員大難不死),整個測試計畫因而延宕15個月,以待美方解決問題,直到1990年5月4日才由修正缺失 的二號原型機再度重返天空;餘下的四架原型機繼續進行飛試,並於測試中證明GRIPEN的機體阻力要比原先預計低達10%,對此感到滿意的瑞典空軍遂於 1992年6月下單採購第二批達110架的JAS-39(計A型機96架與B型機14架,不過後來有20架A型機被修改升級為C構型,以因應外租所需)。

1993 年3月4日,首架量產JAS-39 (39-101) 進行首飛,放眼當時,歐美各國下代戰機量產計畫的確定下單都八字還沒一撇,而葛小潘卻已有140架確認定單,著實相差不可以道里計;然而好景不常, 1993年8月18日,量產二號機再度因另外的飛控缺失而失事墜毀(駕駛員再度大難不死),整個測試部署計畫遂又再延宕四個月。

量產戰機 交予前線作戰中隊的工作於1996年6月9日起正式展開,第一個正式換裝GRIPEN的前線作戰單位是位於Såtenäs的F7聯隊的第二中隊,其於 1997年11月1日進入正式操作服勤階段;第二個換裝GRIPEN的前線作戰單位是位於Ängelholm的F10聯隊,不過冷戰結束後,瑞典空軍決定 裁減多餘軍力,F10聯隊不久之後便遭撤裁,而旗下戰鷹則被送往位於Ronneby的F17聯隊;接下來的換裝者分別是位於Luleå的F21聯隊與位於 Östersund 的F4聯隊。

1995年6月12日,英國航太集團在當時的巴黎航空展會場上,宣佈將於紳寶集團連盟,共同合作開發 GRIPEN戰機的國際外銷衍生型;到了2001年,名為Gripen Internationa的聯合集團正式在瑞典註冊,並開始積極投入JAS-39 EBS(Export Baseline Standard)外銷標準衍生型戰機的開發。由於JAS-39 EBS在經過大幅航電修改更新後,整體能力明顯優於原來的JAS-39 A/B,因此也促成了瑞典空軍將第二購買批次的最後20架GRIPEN與第三購買批次之所有採購戰機均換成此一檔次構型,而這等由瑞典本國空軍採用的 EBS構型,於後來被定名為JAS-39 C/D(單座C型機70架,雙座D型機14架),其自2004年年中起開始撥交F7聯隊成軍。

JAS-39 C/D的主要修改提升項目:
1. 先進全彩大型LCD戰術顯示幕座艙。
2. 換裝新型任務電腦。
3. 可伸縮式空中加油管。
4. 座艙光源改良(以與夜視鏡搭配)。
5. 換裝新型強力空調與OBOGS。
6. 機翼強化與換裝北約標準派龍最大起飛重量提高1,300公斤。
7. Meteor, IRIS-T, KEPD-350等先進武器掛載發射能力。
8. 新型FLIR與電子偵察莢艙掛載與使用能力。
9. 引擎動力升級(RM-12UP發動機)。

GRIPEN 的第一場外銷勝利於1999年12月3日到來,當歐洲雙風的對外銷售不斷敗於美帝之手,對內採購又不斷波折橫生,大規模量產成軍階段時程又千拖萬延到天邊 時,小老弟GRIPEN卻以黑馬之姿異軍突起,率先獲得南非空軍19架單座與9架雙座國際外銷型的訂單,其預定於2006年八月起至2012年間陸續交機 成軍,以取代現役的印度豹C型戰機;南非的國防工業集團希望能在此等南非型GRIPEN戰機上安裝相當比例的自製電子與武器裝備,瑞典方面也希望能透過此 項合作,使GRIPEN戰機所能攜型使用的電子武器系統選擇更加包羅萬象,以有利於未來的外銷競爭;不過南非空軍似乎並不認為愛用國或全然是件好事,例如 在短逞空對空飛彈選擇方面,其便較偏好歐洲多國聯合開發,品質保證的IRIS-T,而非南非國防工業集團所極力鼓吹促銷,但品質沒保證的Darter系列 短程AAM。

不過宛如曇花一現,在外銷南非成功之後,GRIPEN國際外銷大業也隨即陷入低迷,好不容易在2001年12月時,捷克選擇 了GRIPEN戰機作為新一代主力機種,可是隔年的中歐大洪水卻令捷克經濟與財政遭到重創,SAAB/BAEs聯盟煮熟的鴨子也就這麼飛了;而在隨後的波 蘭與奧地利外購案中,GRIPEN分別遭受F-16與EF-2000的擊敗。

然而機不在買,有租則名,冷戰結束之後,瑞典空軍逐年削減旗 下戰機中隊規模,以節省開支;其戰機機隊的總規模從原來的三四百架,先是降至204架上下,接著又在最進決定進一步刪減到只須100架(預定2013年達 成)有人戰機便足以因應未來需要,於是乎瑞典空軍遂有著許多冗餘機群待租待售。

首先向瑞典空軍租借GRIPEN的是匈牙利空軍,其於 2001年9月10日作此決定,原先其準備租借的貨色是JAS-39 A/B,然而到了2003年2月3日,其將租借規格向上修正為JAS-39 EBS Hu標準(JAS-39 C/D外銷版規格,可與北約空軍標準相容,由原來租借的14架JAS-39 A/B修改升級而成),自2006年起正式交機,租約10年,匈牙利空軍可能在租約到期之後將其買斷。

第二個租借GRIPEN的則是迷途 知返的捷克空軍,在因洪水災後重建需錢孔急而取消購買GRIPEN計畫之後,捷克空軍開始考慮租借或購買二手戰機的可能性,考慮的對象包括歐美各國的二手 F-16 A/B/C/D,英國皇家空軍的二手龍捲風ADV,法國佬的二手幻象兩千五F,乃至德國佬的二手幽靈機等等.....然而選來選去,捷克空軍最後還是於 2003年12月12日決定重返GRIPEN的懷抱中,只是這次改買為租,租借數量同樣是12架C型機與2架D型機,並自2005年5月起正式交機成軍, 而捷克空軍也成為第一個使用GRIPEN戰機的NATO會員國。

最新成交的客戶則是泰國,該國空軍總司令在2007年10月17日宣佈將 斥資345億泰銖(約相當於11億美金),於2008至2017年間陸續引進12架JAS-39C/D與2架Erieye空中預警機來取代現役的F-5機 隊,並於2008年2月11日正式簽訂首份價值達190億泰銖之合約。

如果當年 B3LA計畫沒有遭到取消,迫使紳寶集團奮發向上,化危機為轉機的話, 今天的瑞典空軍只怕將會以外國製的主力戰機(八成是美帝F-16)搭配一些了勝於無的B3LA次音速輕型教練攻擊雞肋機的組成方式存在;在渡過初期開發階 段的難關之後,如今的GRIPEN已經蛻變為一款成熟可靠,性能與成本兼顧的頂尖輕型多用途戰機,且讓向來在外銷戰場上幾乎戰無不勝的美帝洛馬F-16家 族連續吃鱉數次,環顧國際間其他約略同期開發的戰機:天地猛禽始終難脫成本不斷飛漲與被國會白宮與五角大廈聯手圍剿的夢魘;歐洲阿信在不斷的爭吵推托與與 挫折幻滅中蹣跚前進,IOC從最初計畫的1987年一路延宕至2005年,且被大砍的陰影始終難去;孤芳自賞的菈法兒至今找不到外銷買主,區區120架的 國內訂單,居然能從1997年一路生產到2012年................相形之下,GRIPEN真是足可引以自豪了。



JAS-39 GRIPEN輕型多用途戰機

一、 機身尺寸:

機全長:單座A/C型14.10 m、雙座B/D型14.75 m
翼展寬:8.40m
機身高:4.50 m
翼面積:30.00 m2

機空重:單座A型6,700 kg、雙座B型7,000 kg 、單座C型6,800 kg、雙座D型7,100 kg
內載燃料酬載:2270 kg
最大外掛燃料:3800 L
最大外掛彈量:3,600 kg(A/B)/5,300 kg(C/D)
最大起飛重量:12,700 kg(A/B)/14,000 kg(C/D)

機體最大升阻比:9/1

機體先天負穩定度:-10% MAC(相比之下,F-16是-5%,Su-35是-20%,EF-2000則是-35% MAC或更低)


二、 飛行性能:

高空最高時速:2.0 Mach(無外掛)

高空最高時速:1.8 Mach+(正常任務最高飛行時速)

海平面最高時速:1.2 Mach

超音速巡航性能:1.08 Mach(瑞典飛官聲稱Gripen可以在外掛四枚AIM-120,兩枚AIM-9,以及一具機腹油箱的狀況下,於中高空進行不加力超巡)

加速能力:
1. 低空自0.5M加速至1.1M,30secs
2. 瑞典飛官表示Gripen在輕裝狀態下的加速性能十分令人印象深刻,且一不小心便會突破安全限制,在中高空時,其甚至可使用約45%左右的推力,便維持0.8馬赫級的巡航。

緊急爬升性能:
1. 自地面鬆煞車至爬升到10000 m處,約1分40秒; 爬升到14000 m處,約3 分鐘。
2. 根據南非方面的報導,在推重比約0.94(約是Gripen在50%~60%內載燃料下的標準空戰後燃推重比)的狀況下,Gripen爬升至31,800 英尺高度所須時間約1分40秒(相比之下,EF-2000自鬆煞車爬升至40,000至42,000英呎高度所需時間約在一分至一分30秒間;而 Rafale與F-16C爬升至40,000英呎高度所需時間則約為兩分鐘)。

實用升限:16,500 m

低空空戰推重比(100%內載燃料 + 四中二短):單座空軍JAS-39A型機:0.83/0.56(後燃/最大軍用)

空戰翼負荷(100%內載燃料 + 四中二短)
1. 單座空軍JAS-39A型機:331.7 kg / m2
2. 單座空軍JAS-39C型機:335.0 kg / m2

轉彎性能:30度/秒(瞬間),20度/秒+(持續)

滾轉率:在時速0.79馬赫下可達每秒240度

最大攻角:50度(FCS穩定攻角上限),110度(瞬間攻角極限)

G-load:
1. 正常操作範圍為-3 ~ +9 G,可在1.2秒內由1G轉變為9G狀態,機體結構承受上限為+12 G。
2. 為了避免飛行員因劇烈的G值變化昏迷失事,瑞典開發了新型抗G服供其飛行員配備使用;這款新型抗G衣的抗G能力極為優異,據說當戰機機動至9G的時候,飛 行員所感受到的G值只有5~6G而已;所以理論上,在緊急狀況下JAS-39飛行員可以做出12G的緊急瞬間機動。
3. The pitch control system provides with a “soft stop” and a “hard stop”. When the pilot pulls back to the soft stop to increase the g, the aircraft’s central processors limit the amount of g to a maximum of 9g. The aircraft system will not allow more than the 9g programmed maximum and the pilot will have to increase the stick force through to the hard stop to generate a 12g maximum.

*在各種酬載條件下Gripen的機動性能飛控安全限制示意圖:
http://www.ntva.no/seminarer/manus/eddy-270207.pdf
Page45 and Page46

起降跑道長度需求:
1. 利用前翼, JAS-39據稱因此縮短了17%的起飛滑行距離與28%的降落滑行距離;拜大型前翼煞車板之賜,JAS-39不用阻力傘或逆向推力之助,便能在一段長 790公尺,寬17公尺的本國公路上進行所有任務的起降飛行,瑞典飛行員甚至宣稱:他們在模擬器上已經成功演練過不用尾勾便在老美超級航艦上順利降落。
2. 起飛:輕裝下只需300公尺左右的起飛跑道長,而重裝時也不過400 ~ 600公尺。
3. 降落:一般狀況下只需400公尺左右的降落跑道長,而在最大降落重量狀況下的跑道長度需求也不過500公尺。

最大續航距離:3000 km
點至點最大飛送航程:2778km
CAP(AIM-120*2, AIM-9L*2, 兩具副油箱):可在距離基地385km處執行巡邏任務兩小時
Lo-Lo-Lo打擊任務半徑:648km(1000磅級GBU-16*3)
Lo-Lo-Lo打擊任務半徑:833km(1000磅級GBU-16*2+副油箱*1)
Hi-Lo-Hi反艦作戰Range:500km(RBS-15F ASM*2)


三、 引擎動力:RM-12渦扇引擎*1
a. 引擎全長:4.04 m
b. 引擎外徑:0.884 m
c. 引擎內徑:0.709 m
d. 引擎重量:1055 kg
e. 最大軍推:12140Ib(54kN)
f. 後燃推力:18100Ib(80.51kN)
g. 總壓縮比:27.5:1
h. 引擎推重比:7.79:1/5.22:1(最大軍推/後燃推力)
i. 推力提升潛力:10~15%


四、 火控雷達:PS-05/A脈波都卜勒雷達
a. 雷達重量156 kg,天線重量25 kg,天線直徑60公分
b. 空對空偵測距離:約可在120 km處偵測到典型戰機大小目標
c. 空對面偵測能力:可在距離90 km外追蹤計數地面與海面目標
d. 多目標攻擊能力:追14打4
e. MTBF: 170小時以上

f. 未來升級展望:
http://forums.bharat-rakshak.com/viewtopic.php?t=2055&start=120
2005年:PS-05A Mk3雷達 + E18 OFP軟體
1. Full look-up look-down capability" + multi-target track-while-scan.
2. PTT and STT.
3. Short-range auto-acquisition and tracking.
4. BVR missile datalink capability.
5. SAR/GMTI/GMTT capabilities.
6. Air-to-ground ranging and sea surface modes.
7. The radar targeting modes are also integrated with the Gripen's intra-flight datalink so that radar tracks are automatically shared with the other JAS 39 aircraft in the flight.

2008年:PS-05A Mk3雷達 + E19 OFP軟體
1. 南非空軍所採購的GRIPEN戰機上率先採用.
2. The interim radar update is aimed at better preparing the JAS 39C/D for providing air support to the Swedish-led Nordic Battlegroup - a 2,000-strong rapid reaction force to be on standby for a crisis response operation under the EU flag during the first half of 2008.

2010年:PS-05A Mk4雷達 + E20 OFP軟體
1. 目前僅限瑞典空軍的100架JAS-39C/D換裝.
2. 增添極高解析度SAR模式.
3. 增添靜態目標自動偵測功能.
4. 強化GMTI/GMTT功能.

2012年:PS-05A Mk5 AESA雷達
1. 換裝主動陣列天線(約1,000 T/R單元,來源是美或歐仍在研究中).
2. Geo-positioning of targets and Geo-coding of SAR images.
3. Long-range detection and tracking of air targets in support of the future MBDA Meteor missile.

2015年:PS-05A MK5系統升級(NOAR雷達功能)
1. A full, multi-channel AESA system.
2. Being subdivided into multiple sub-apertures capable of adaptive beam forming and digital beam forming of multiple beams for multi-tasking:
(a) Dominant battlespace awareness.
(b) Air target tracking and fire-control for BVR weapons.
(c) All-weather precision ground target capability.
(d) Non-co-operative target recognition [NCTR].
(e) Low probability of intercept [LPI] through a low radar cross section and flexible energy management.
(f) Electronic warfare inclusive of offensive jamming.

2018年:EIRA計畫
進一步升級為all-in-one全功能感測器,結合主動雷達,被動雷達,通訊資料鏈,與整合電戰/電子壓制功能於一體.


五、材料重量比:
http://www.ntva.no/seminarer/manus/eddy-270207.pdf
Page 25
鋁合金:59%
複合材料:20%
鈦合金:8%
鋼:5%
其它:8%


六、標準武裝:

A. 固定武裝:毛瑟Bk-27 27mm單管機炮*1(砲彈120發)
(JAS -39的機炮射控有一項獨步全球的性能:Auto-aimer;一旦飛行員開火,戰機雷達便自動追蹤目標並計算目標的正確機炮攔截距離與射擊角度,同時自 動控制戰機的飛行,使機砲火力能精準的朝目標投射【也就是說,一旦確認攻擊目標,飛行員只管扣板機就好,飛行的部份交由電腦處理即可。】;這種能力不僅能 使JAS-39的機炮有效射程顯著延伸,在惡劣天候或夜晚的情況下使用更是效果奇佳。)


B. 空戰配備:

短程AAM:
先前為Rb-74(AIM-9L)*2,自2006年起開始正式換裝Rb-98(IRIS-T IIR高機動離軸短程AAM,實戰有效射程25km級,約是Rb-74的2.5至3倍)

中程AAM:
目前Rb-99(AIM-120B or AIM-120C5)*4 , 預定在2011至2012年以後改開始換裝Meteor中長程AAM。
根據IDR月刊的一篇專文記載:”JAS-39戰機上的飛控軟體,能在戰機以四枚AMRAAM進行同步接戰的狀況下,找出能一邊提供四枚飛彈中途資料更新,一邊脫鎖飛行的最佳飛行路線。 ”


C. 反艦配備:
RBS-15M/F ASM(RBS-15M單發重量約600kg,擁有200kg級HE彈頭,有效射程約15miles【24KM】)


D. 對地攻擊配備:
1. Rb-75(小牛A/B型飛彈):有效射程約6km。
2. Bk-90次彈械撒佈器:有效射程5~10km。
3. 波佛斯M70六聯裝135mm無導引火箭發射器。
4. 1000Ib級LGB(GBU-16……..)
5. 德瑞合作KEPD-150/350金牛座遠攻飛彈
(根 據先前計畫,射程較遠且重量較重的KEPD-350將由德國空軍的龍捲風重型戰鬥轟炸機與EF-2000中型多用途戰機使用,至於較為輕小短程的KEPD -150則供瑞典空軍的JAS-39所使用;然而隨著JAS-39的武裝攜型量日益提升【3600kg-->4500kg--> 5300kg】,現在瑞典空軍也在改用射程較遠的KEPD-350。)


七、 後勤維修/操作成本:
A. 7.6 flight hours between failures。
B. Less than 10 maintenance man-hours per flight hour。
C. Flyaway Price:equal to the new F-16C/D
D. Operating cost:less than 2500 USD per flying hour.


八、 近未來升級改良計畫:

A. 第三批次型(JAS-39C/D):
http://www.gripen.com/NR/rdonlyres/247CA2A2-C551-4633-AF49-5E9127DCAD76/0/gripen_news_2006_3.pdf
瑞典軍方於2006年6月30日斥資1.39億美金,正式展開JAS-39 C/D型戰機Version 19軟體昇級計畫,全部工程預定在2008年前完成,具體升級項目如下:

1. 增添閃電三型莢艙使用能力。

2. 雷達增添高解析度雷達模式~待其發展完成後,PS-05A雷達將能精準地將JDAM導向預定攻擊目標。

3. 雷達增添SAR與GMTI模式功能。

4. 增添IRIS-T WVRAAM使用能力。

5. 電戰預警/自衛系統升級。

6. 正式引進NVG。

7. 引進Link-16/Mode IV IFF/Have Quick加密通訊等北約標準化配備。

8. 正式為D型機引進新型”任務化座艙”,從此後座飛官能獨立進行高複雜度任務執行。


B. 頭盔顯示器:瑞典FMV於2007年10月2日正式宣佈將斥資約5400萬美金,為瑞典空軍所使用的JAS-39C/D加裝由英國航太集團主導,瑞典與南非共同協助研發的Cobra頭盔顯示器,此一配備在先前業已為南非空軍的JAS-39C/D所正式採用。


C. 尚在考量中的進一步升級計畫:

1. 被動式偵搜系統(Saab IR-OTIS IRST)

2. 瑞典JAS-39 AESA雷達換裝計劃的最新發展:

a. ERICSSON集團將其AESA雷達開發計劃定名為NORA計劃,意思是”Not Only A Radar”

b. 第一具NOAR AESA雷達原型於2006年正式安裝在一架GRIPEN戰機上進行測試,不過距其正式量產成軍還要再等上六至七年左右。

c. NORA雷達的特點:
#更強大的長程搜索追蹤能力(水平搜索角提升+探測距離增加+先進波束控制+超低旁波瓣)
#空對空/多重任務多目標接戰能力強化以及匿蹤目標探測能力強化。
#具備主動搜索與匿蹤式被動偵蒐兩種搜索追蹤模式以及低被攔截概率,大幅強化戰機匿蹤性。
#高度彈性的主/被動目標search模式能有效強化SA以及information superiority。
#在偵查或精確打擊作戰時能提供超高解析度的即時合成孔徑雷達地形圖以及移動目標指示。
#使用速度更快,更為寬頻以及抗干擾力更強的網路資料鏈,使JAS-39原本已經十分可怖的資料鏈網路戰力更加強大,配合上bistatic或是多機三角定位法戰術,不但能提昇偵測距離,提高定位精度,更能用於偵測攔截敵方的匿蹤戰機之上。
#除了雷達的功能之外,拜其被動模式之賜,其也同時是一款功能極為強大的ECM以及ESM。

d. 除了NORA雷達外,JAS-39也預定於2010年後以MIDAS整合式電戰防護套件取代現役的EWS-39電戰套件,MIDAS整合式電戰防護套件同 樣以平板式主動陣列天線為組成核心,預警範圍以及威脅標定精度和處理能力皆遠優於現役預警系統,且能在收集並精確分析電磁訊號後,迅速對威脅來源雷達施以 強力電磁干擾壓制或監聽,以及提供在10秒內、只利用一架飛機精確定位敵方目標的能力。ERICSSON集團聲稱,在換裝MIDAS之後,JAS-39的 電磁戰力將絕不下於任何一種現今專業SEAD戰機,且當這些專業SEAD戰機是得在大包小包的猛掛三至五個電戰艙夾之後方能獲得足夠電磁防護戰力時, JAS-39上的MIDAS整合式電戰防護套件卻是整合在機體內,因此可空出更多的掛架來掛載反輻射飛彈執行SEAD任務。

由上可知,英 國航太集團與瑞典易立信集團均希望未來當其所製造的AESA雷達於EF-2000和JAS-39部署成軍時,其整體對空/對地搜索追蹤性能與在同步執行多 重功能上的表現,能朝老美AN/APG-77後續提升型/AN/APG-81看齊;不過偉大的軍武壯志雄心總是得有相對稱的預算投資,才能功德圓滿;而長 期以來總是阮囊羞澀的老英老瑞,能否在八至十年後完成這樣與老美平起平坐,分庭抗禮的壯舉??亦或是計畫研發時程一拖再拖,規模與性能要求一刪再刪,最後 甚至無疾而終,再度創下因一個眼高手低而導致研發失敗的經典軍武教訓???值得觀察。


九、JAS-39A資料鏈系統,CDL39之性能概述:

A. 構成套件:
1. Fr41類比式radio*2
2. Fr90數位式radio*1
(操作頻率:960~1215MHz,使用先進抗干擾技術,例如躍頻捷變、Encryption、先進密碼等等....)
3. Audio Management Unit(AMU)
4. Ground Telecommunication Amplifier(GTA)
5. Audio Control Panel(ACP)
6. Communication Control Display Unit(CCDU)


B. TIDLS為一款可連結四機的雙向全時資料鏈,擁有五百公里級的操作距離,以及極強的抗干擾能力(號稱唯一可干擾它的方法,是把電子干擾機擺在兩架資料鏈 連結的葛瑞潘戰機間),其能將四機的位置,速度,狀態,剩餘燃油與武裝等清楚呈現於各機螢幕上,和LINK-16相較,其能交換傳送更多資料,且運作更接 近真時境界.

1. A basic use of the datalink is silent attack. An adversary may be aware that he is being tracked by a fighter radar that is outside missile range. He may not be aware that another, closer fighter is receiving that tracking data and is preparing for a missile launch without using its own radar. After launch, the shooter can break and escape, while the other fighter continues to pass tracking data to the missile. In tests, Gripen pilots have learned that this makes it possible to delay using the AMRAAMs active seeker until it is too late for the target to respond.(TIDLS替身能力之一:”沉靜獵殺”,雷達導控與飛彈發射來自不同來源;瑞典空軍測試證實,在某些狀況下,此一功能甚至可顯著延後 AIM-120開啟主動雷達尋標器的時間,令敵機更加反應不及.)

2. But the use of the link goes beyond this, towards what the Swedish Air Force calls samverkan, or close-cooperation. One example is the use of the Ericsson PS-05/A radar with TIDLS. An Ericsson paper compares its application, with identical sensors and precise knowledge of the location of both platforms, to human twins: Communication is possible without explaining everything. (TIDLS替身能力之二:”孿生心電”, Communication is possible without explaining everything.)

3. Radar-samverkan, the Ericsson paper suggests, equips the formation with a super-radar of extraordinary capabilities. The PS-05/A can operate in passive mode, as a sensitive receiver with high directional accuracy (due to its large antenna). Two PS-05/As can exchange information by datalink and locate the target by triangulation. The targets signals will often identify it as well.(”孿生心電”能力具體應用之一,兩架葛瑞潘的雷達均擺在被動偵測模式狀態,接受特定目標所發出的電子訊號,透過資料鏈以交換分享兩機各自收集 之情資 ,最後以三角定位法求得敵機的精確方位.)

4. The datalink results in better tracking. Usually, three plots (echoes) are needed to track a target in track-while-scan mode. The datalink allows the radars to share plots, not just tracks, so even if none of the aircraft in a formation gets enough plots on its own to track the target, they may do so collectively.(”孿生心電”能力具體應用之二,”三機成虎”)

5. Each radar plot includes Doppler velocity, which provides the individual aircraft with range-rate data. However, this data on its own does not yield the velocity of the target. Using the TIDLS, two fighters can take simultaneous range-rate readings and thereby determine the targets track instantly, reducing the need for radar transmission.(”孿生心電”能力具體應用之三,”互通有無”)

6. In ECM applications, one fighter can search, while the wingman simultaneously focuses jamming on the same target, using the radar. This makes it very difficult for the target to intercept or jam the radar that is tracking him. Another anti-jamming technique is for all four radars to illuminate the same target simultaneously at different frequencies.(”孿生心電”能力具體應用之四,”團結就是力量”,四機雷達以不同頻段同時照明敵機目標,令其無所遁形.)

7. An important feature of the link is that it works when the airplane is on the ground. A Gripen can stand alert on the runway, with all systems go and the APU running, and the pilot can remain fully cognizant of the tactical situation.

C. 根據FMV說法,和CDL39相較,現役的其他西方世界戰機DATALINK不僅資料傳輸交換速率低得可憐,且無法實現平台間資訊自由傳輸,能處理的資料 形式也受限;得等到F-18E/F與EF-2000等先進戰機正式服役之後,歐美各國海空軍方能首次擁有能與瑞典空軍JAS-39相提並論的 DATALINK戰力。

D. 瑞典空軍演習發現,靠著使用CDL39,六架JAS-39A便足以捍衛瑞典一半的國土領空,三組CAP則足以徹底監控捍衛整個瑞典東半部海岸線的空防安全。


十、量產批次簡介:

A. Batch1:
1. 1982年簽約訂購,總數量30架,並於1993/6/8~1996/12/13期間陸續交貨;其中單座A型29架(S39101~S39130),雙座 B型1架(其從單座型S39129改裝而來,並且重新編號命名為S39800);其中單座型S39102於1993年八月十八日因FCS系統問題而失事墜 毀。

2. 其電子系統配備為MK1構型,重要內容如下:
a. D80任務電腦
b. 李耳公司研發三重數位式線傳飛控系統。
c. 休斯公司研發廣角HUD。
d. 三具5*6 Inch 單色CRT HDD,由PP1和PP2處理器操控。

3. 目前所有第一批次型JAS-39A/B均已被升級至第二批次MK2構型。


B. Batch2:

1. 1992年簽約訂購,總數量110架,並於1996/12/19~2003年間陸續交貨;其中單座A型96架(S39131~S39226),雙座B型14架(S39801~S39814),本批次戰機又分成兩個次型:MK2和MK3構型。

2. MK2構型的重要改良內容:
a. 任務電腦升級為D80E,記憶容量與處理速度分別為舊有的D80之五倍與十倍。
b. 線傳飛控系統改由洛馬集團供應。
c. HUD改由Kaiser電子提供。
d. CRT HDD改以較為輕小且能力更強的PP12處理器操控。
e. APU系統由先前的法國貨改為美製品,輸出功率更強,且噪音與操作成本更低。

3. MK3構型的重要改進內容:
a. 本批次最後20架單座型【S39207~39226】為此構型。
b. 任務電腦換裝為全新的D96模組化超級電腦,記憶容量與處理速度均有所提升。
c. HDD部份換裝使用彩色型CRT。
d. 其他部份同MK2構型。
e. 這一批次戰機至2007年時已全數升級為JAS-39 C/D規格。


C. Batch3(JAS-39至此改稱為C/D型):

1. 1997年簽約訂購,總數量64架,並預定於2003~2007年間陸續交貨;其中單座C型50架(S39227~S39276),雙座D型14架(S39815~S39828)。


2. JAS-39 C/D”超級GRIPEN”的升級改良範圍:

a. 強化機身結構強度,全備起飛重量提升至14,000 kg以上,最大外掛酬載從3,600 kg提高至5300 kg。

b. 加裝空中加油管。

c. 降低減少 radar echoing area,(可能)使用吸波塗料,強化其雷達低可視度性能。

d. 機腹縱列式雙發半隱藏飛彈發射器。

e. RM-12引擎:換裝新型Turbine, Flame Holder與FADEC,提昇其推力等方面性能。

f. 換裝新型符合噪音公害規定標準的APU,其輸出功率更強,且噪音與操作成本更低。

g. 以三具6.25 * 8.25英吋的大型全彩液晶MFD取代原有的5 * 6英吋的單色CRT,使其SA掌握能力大幅提高;瑞典方面宣稱:JAS-39C/D擁有當今世上數一數二的”大螢幕”,目前只有老美猛禽才能與其相提並 論;如果單以所佔儀表版面積比例相比較的話,更是今日的世界第一,未來僅JSF有可能更在其之上。而瑞典方面也並不以此為足,其目前也在研發類似JSF所 使用的新一代數位航電座艙螢幕科技,未來可能以單一超大超薄可分割畫面智慧全彩螢幕,取代現行的三具AMLCD;不過和老美認知不同的地方在於瑞典方面認 為HUD在未來仍有其需要(緊急備份,對地精準投彈...),無法全面以HMD與大螢幕取代。

h. 更符合人因工程的操控界面設計。

i. oxygen-producing system (OBOGS)與空調強化。

j. MK4規格航電,任務電腦換裝為全新的D96模組化超級電腦,記憶容量與處理速度均有所提升。

k. MIL-STD-1553B data bus 數量增加至五套。

l. 換裝MPEG-2數位式錄影記錄器。

m. 換裝NINS新型整合式導航系統(ILS + TERNAV + INS/GPS)。

n. 換裝NILE新型整合式著陸系統。

o. TARAS (Tactical radio system) + CDL-39 (Communication and DATA left 39). The TARAS makes a simultaneous, digital and secured audio and data communication possible on VHF and UHF channels. The TARAS and the CDL-39 besides by the all digital, disturbance-resistant frequency jump radio system Rockwell Collins Ra90 are supported.

p. Radar:
In addition new computers for the radar are intended, which are to increase the Stoerungsresistens and the reliability by 50 %.

q. EWS-39第二代整合式電戰系統(初期型JAS-39A/B的電戰系統只有RWR、ECM模組以及兩具翼尖BOP403干擾絲/火焰彈撒佈器,EWS- 39將增添兩具派龍攜帶BOP402 反制措施撒佈器、一具雷射警告裝置、一具飛彈近迫警告器和一具BOL500拖曳式RF誘餌。)

r. 武器系統升級方面:
#. Meteor中長程衝壓推進AAM(預定2012年成軍)
#. IRIS-T紅外線影像短程AAM (2006年正式成軍)
#. Litening II莢艙+GBU-10/12/16 Paveway II LGB(自2003年起配備)
#. KEPD-150/350 TAURUS距外遠攻飛彈(2005年成軍)
#. JDAM and JSOW


3. GRIPEN家族未來發展:

http://www.eurofighter-typhoon.co.uk//forum/viewtopic.php?sid=&f=13&t=1359

Saab展開數項JAS-39未來提升研究方案:

A. 效法超蟲精神,開發體擴重升油增彈加改良型超級潘多功能打擊戰機。

B. 推力提昇:目前RM-12發動機的推力有再提升10~15%的潛力(18,100Ib --> 19,910 ~ 20,815 Ib),此外換裝F414發動機也是一個可選擇的方案;然而雖然其能增加至少25%的推力並有效提高戰機航程籌載,但是整個機體也得大範圍重新設計來過 (a larger centre fuselage barrel, enlarged engine inlets, redesigned nose gear and a need to provide additional internal fuel capacity..........)。

C. 雷達升級:AESA天線可自2012年開始在PS-05A雷達上換裝,至於multi-channel改良型AESA天線則得等到2015年才能實用化,而完備的全功能"Not only a radar"系統則要等到2018年才能開發完成。

D. 艦載衍生型:用來伺機搶印度佬甚至英國佬的艦載戰機生意.......


http://www.mil.no/multimedia/archive/00089/3_Gripen_Capability_89303a.pdf

SAAB最新Gripen戰機宣傳文件

Page 17, 2015挪威版Gripen N預定基本性能諸元

戰機名稱: JAS-39C/JAS-39N
機體空重: 6,800 kg/ 7,100 kg
最大起飛: 14,000kg/16,000kg
內載燃料: 2,268 kg/3,130 kg (提升38%)
外掛彈量: 5,000 kg/6,000 kg
最大後推: 18,000Ib/22,000至26,000Ib
外掛武裝派龍: 八具/ 十具

*JAS-39N的長寬尺寸與JAS-39C完全相同,僅透過加裝新機體內油箱與變更起落架安裝位置,便讓內載燃料酬載提高38%(空重則增加約300公斤)。
*換裝F414G渦扇引擎,最大後推估計將介於22,000至26,000磅間。
*換裝NOAR AESA雷達系統。
*電戰系統/戰術資料鏈/座艙航電/頭盔顯示器性能提升。
*加裝衛星通訊資料鏈。
*換裝(根據摩爾定律性能暴增)新型任務電腦。
*SDB等新型武器系統使用能力。


十一、綜合評論:

A. 速度: 可在中高空以1.8馬赫的持續速度飛行

B. 加速度: 比F/A-18C與幻象兩千快, 但是比F-16C慢

C. 轉彎角速率:
持續轉彎角速率略遜F-16C與F/A-18C一籌, 但比幻象兩千快, 至於瞬間轉彎角速率則明顯優於前述三者, 對於近距空戰搶第一時間鎖定大有助益.

D. 爬升性能:
受限於推重比相對不足, Gripen的爬升性能和一般第三與第四世代戰機比較起來亦相對偏低:
* EF-2000:標準空戰構型下,自海平面爬升至12,192公尺高度所需時間一分鐘至一分四十秒內.
* Rafale:標準空戰構型下,自海平面爬升至12,192公尺高度所需時間小於兩分鍾.
* F-16:標準空戰構型下,自海平面爬升至12,192公尺高度所需時間約為兩分鐘左右.
* JAS-39:自海平面爬升至10,058公尺高度所需時間約為兩分鐘左右.

E. CAREFREE線傳飛控設計, 測試時最大飛行攻角超過一百度, 不過瑞典空軍考量過大飛行攻角在實戰下可能導致飛行員發生空間迷向失事墜毀, 因此量產型戰機上的FCS增加了正常攻角上限五十度的限制.

F. 極低的正面RCS, 1990年代末期的瑞典方面資料號稱Gripen的正面最小RCS只有F-18C的1/5, F-16C BLOCK40的1/3, 以及M2000-5的1/2; 到了2006年, 計畫負責人更於法茵堡航空展中受訪時聲稱Gripen的正面最小RCS可能只有F-16的1/10左右.

G. PS-05A雷達有效偵測距離: 略遜於AN/APG-65, 但較RDY遠20%, 較AN/APG-68遠40%

H. 精益求精的後勤維修支援可靠性:
1. 平均故障間隔時間: 7.6飛行小時 (現役美空軍前線戰機未有能超過4.1飛行小時者)
2. 每飛行小時維修人工時數: 12-->10
3. 每飛行小時所需費用: 2500美金--> 2000美金
4. 十二架編製中隊僅需60名地勤人員負責後勤工作, 三名地勤可在四十五分鐘內完成引擎拆換裝的工作.
5. 計畫負責人於2006年法茵堡航空展中受訪時聲稱其整體引進與操作成本只有F-35與EF-2000的50%上下.

I. FMV針對Gripen戰機成軍後實際性能表現與最初計畫要求之差別統計:
1. 短場起飛性能:比原始計畫要求高出28%
2. 短場落地性能:比原始計畫要求高出17%
3. 偵查任務航程:比原始計畫要求高出52%
4. 打擊任務航程:比原始計畫要求高出47%
5, 戰鬥空巡耐力:比原始計畫要求高出47%
6. 轉彎角速率:比原始計畫要求高出5%
7. 雷達對空目標探測距:比原始計畫要求高出15至40%
8. 雷達對地目標探測距:比原始計畫要求高出20%
9. 雷達Precision:比原始計畫要求高出50%


J. Flight International 2000/02/08,關於JAS-39 GRIPEN戰機的飛試報導:

In the hot seat

Flight International's test pilot is the only person to have flown all three of Europe's fourth-generation fighters, the Eurofighter, Dassault Rafale and now, the Saab Gripen

Chris Yeo/Linköping

The problems confronting a fighter design team are broadly the same, whatever their nationality. The best solutions to maximise aerodynamic performance while minimising weight and cost depend on the technology available at the design freeze. It is no coincidence that Europe's three fighter aircraft, the Dassault Rafale, the Eurofighter and the Saab Gripen, are unstable canard delta designs with fly-by-wire flight-control systems (FCS), airframes with a high percentage of advanced structural materials and electronic display-dominated cockpits. The approach to detailed problems, however, such as integration as a weapon system, the pilot/aircraft interface and the incorporation into the national defence structure, varies considerably.
開宗明義:前翼三角翼設計的目地,在於以最低的機體結構重量與成本,爭取最佳的機體氣動性能。


The aircraft flown for this evaluation, a Swedish air force two-seat JAS39B, is the product of this design philosophy. After the Cold War ended, Swedish policy became one of co-operation with NATO, and Gripens will be modified to be interoperable. Saab, with BAE Systems, is pursuing export sales. These factors will markedly change the equipment and displays fitted to aircraft delivered to the Swedish air force after April 2002 and those destined for export customers.

Preparation also included flying clothing fitting, necessary for the pilots to communicate, to operate effectively at sustained high g and to survive an ejection into a cold sea. In the Gripen, the clothing includes immersion gloves and suit with air ventilation, calf-length boots incorporating leg restraints, a full-coverage lower body g suit, a jacket with arm restraint, flotation and survival aids, as well as an upper body g suit (counter pressure), a helmet (without chin strap) and mask. The equipment can be donned unaided in about 10min and is reasonably comfortable.

During the evaluation, ceiling and visibility were good, with an air temperature of 2°C, and a wind of 230°/14kt (25km/h) at Saab's Linköping test facility. The runway surface was dry, although there were some frost and ice patches on the parking apron. The aircraft's configuration was two dummy wingtip missiles, a full centreline 1,100 litre (290USsgal/ 880kg) fuel tank and full internal fuel (2,280kg). The empty mass was 7,100kg, making take-off weight around 10,600kg. The single-seat JAS39A Gripen is 0.7m (2.29ft) shorter, weighs 600kg (1,322lb) less and carries 120kg more internal fuel than the two-seater.
# JAS-39A:空重約6,500公斤,內載燃料2,400公斤
# JAS-39B:空重約7,100公斤,內載燃料2,280公斤
# 後來的C/D型戰機,分別比A/B型重上約300公斤
# 本次受測機種為JAS-39B,在掛上一具1,100公升油箱與兩枚翼稍假彈後,起飛重量約10,600公斤。
 
Compared with other fighters, the Gripen is a small aircraft and the whole airframe is visible during the walk-round inspection. The cockpit is also small, but well laid out, with essential operational controls readily to hand. Several switches at the back of the port console are difficult to access since downward vision is partly restricted by the flying clothing. These switches, however, are different in shape and action and are guarded, so there is little risk of inadvertent operation, although care is required when operating the seat raise and lower switch, which is tucked away at the rear of the console. Once strapped in, the cockpit is comfortable, with the three electronic head-down displays (HDDs) and head-up display (HUD) clearly visible.
JAS-39的駕駛艙雖嫌狹小,但整體而言還算舒適且控制板面分配設計合理,不過仍是有些按鈕開關在視野死角範圍,操作起來需相當留神。

Ground independence

Pre-start checks were brief. The electrically powered, sideways hinged canopy was lowered and locked down and the auxiliary power unit (APU) started. The APU provides hydraulic and electrical power, as well as air conditioning, and makes the aircraft independent of ground support for road operations. After bringing the electronic system and FCS on line, there was a 56s interval while the inertial navigation system initialised and aligned. After checking the throttle for full and free movement it was set to ground idle and the single Volvo RM12 engine started.

The start was smooth and rapid, with the engine soon idling at 60%/400°C. The after-start checks were simple as the utility systems are highly automated and little, if any, pilot intervention is either possible or necessary. There is, however, an extensive range of automatic built-in tests that are reported to the pilots, showing system functionality and serviceability. After a short delay while a final system finished its self-check, the aircraft was taxied to the runway 11 threshold. A small throttle movement to just above flight idle was necessary (ground idle opens the reheat nozzle to reduce thrust) to get the aircraft moving, but it taxied at ground idle. The nosewheel steering is scheduled with ground speed and is powerful and accurate; below 11kt, full nosewheel deflection is available and the aircraft can be turned in a small radius. The toe pedal-operated wheelbrakes react slightly abruptly to small movements, but were satisfactory in other respects.

Once lined up on the threshold, full dry power was set, with the wheelbrakes firmly applied. The left-hand electronic display includes a vertical scale indicating throttle angle and, on the ground only, actual thrust achieved as a percentage of the maximum that should be available. This is useful since the pilot can rapidly determine engine serviceability from a single display. The minimum acceptable achieved thrust for take-off was 90% on this occasion, and the engine stabilised at about 100%. The brakes were released and, as the aircraft moved forward, full reheat was selected by moving the throttle fully forward through a soft detent.
在地面準備起飛時,JAS-39有個十分實用的模式:告知飛行員在不同節流閥角度下,當時引擎所產生的實際推力與理論上可達推力間的百分比~飛行員可以靠此立即判斷戰機引擎狀況是否適合升空出擊。

Reheat light-up was smooth and progressive and the Gripen accelerated rapidly. A nozzle area gauge is not fitted but, given the power-to-weight ratio of the aircraft, there was little doubt that reheat was functioning. Rotation speed is indicated in the HUD by a small vertical marker moving up towards the aircraft symbol. The stick was moved back at 134kt, almost full back stick was used to raise the nose and the aircraft left the ground at 154kt. It was hard to estimate the ground roll accurately, but it was around 600m.
在上述酬載狀態下,JAS-39在約使用600公尺跑道,加速至154節後起飛升空(由此可見JAS-39戰機在推力上的相對不足~Rafale戰機在外掛酬載不下五噸的重裝構型下,起飛跑道長也不過615至635公尺)。


Once airborne, the aircraft was easy and natural to fly, with no sign of over-controlling. The undercarriage was retracted and reheat cancelled - both without any trim change. Altitude was gained at the best climb speed of 380kt to 9,000ft at a 15° climb angle. Start up, take-off and the climb to the cruise altitude used 14% internal fuel. Unfortunately, the HUD displays either indicated airspeed or Mach number, but not both. The automatic change-over point is close to the normal climb speed and it was necessary to refer to an HDD to obtain either Mach number or airspeed. It is usual to display both on a HUD, and this would improve the display and reduce the need to scan regularly across two instruments.
升空後,測試戰機收回起落架與關上後燃,並以時速380節,15° 爬升角之姿上升至9,000英呎巡航高度~自戰機啟動到目前,約消耗14%內載燃料(約320公斤)。

試飛員對戰機抬頭顯示器無法同時顯示戰機空速與馬赫數之事,頗有微辭。

Display quality

En route to a rendezvous with another Gripen, a brief check of the FCS was made and the electronic displays viewed in bright sunlight. All displays were adequately bright and the writing quality excellent. The test aircraft's displays were green monochrome, although export and batch three aircraft will have colour displays - which will make it easier to assimilate the quantity of data available. The map alphanumerics remained north orientated, although the map was track orientated, making it more difficult than necessary to read the data. While this may not be a problem for a pilot flying over a familiar area, it did not aid rapid assimilation of map or datalink information.
試飛員對顯示器移動地圖的設計亦感到有些難以適應。


The control column is a small centrally mounted "mini-stick" pivoted just below the pilot's hand. The aircraft was flown by wrist action for small movements, with the addition of some arm action for larger movements. It was comfortable and there was no tendency towards overcontrol or pilot-induced oscillation. The FCS provides neutral longitudinal static stability with the undercarriage up and positive static stability undercarriage down.
中置式微型操縱桿握感良好,且無操控過度或飛行員導引震蕩傾向。

An examination of the air-to-surface and air-to-air weapon systems was planned. The first exercise was a simulated attack on a ship in the Baltic, using a Saab RBS15 sea-skimming missile targeted using information datalinked from another Gripen. The Swedish air force makes extensive use of air-to-air and air-to-ground datalinks - a key part of the strategy to share information widely between friendly forces. As the aircraft was positioned for the ship attack and throughout the rest of the flight, the map display showed the heights and tracks of traffic flying along an airway across southern Sweden, as well as two other Gripens. The position of the target was passed from the other aircraft and shown on our map display. The anti-ship missile was selected by a single switch action on the stick. Immediately, the missile's flightpath directly to the ship was marked on the HUD and HDD with maximum and minimum firing ranges and the start of sea-skimming mode. The missile could have been fired immediately as the maximum range was passed, but other options were provided such as introducing a waypoint into the missile's flightpath and adjusting the sea-skimming start point. The attack was set up with little radio discussion between the two aircraft. Such an attack poses a considerable problem to a ship's self-protection team as the missile is fired from a passive aircraft with an accurate target position and the missile can fly a non-direct track to the ship.
資料鍊聯合網路作戰應用於反艦作戰時的情形...........................


All Gripens are multirole. After completing the ship strike, the aircraft was reconfigured for the air-to-air role by pressing a single button. Our friendly wingman became hostile and was shown as such on the datalink display, although the attack system recognised the transponder as uniquely Swedish and indicated this. The target was designated as something of interest to the track-while-scan radar using a hand controller on top of the throttle.

The HOTAS is configured with weapons selection functions on the stick, while the throttle has two pistol grips. The upper has the sensor controls (radar range, scan angle and, in the future, forward-looking infrared) and the lower grip some of the navigation functions and the airbrake selector. This may sound complex, but it was not. While I did not become totally adept at manipulating the various buttons quickly, I could select most modes and functions when required. To engage the target, full dry thrust was set, the aircraft taken to 13,120ft and accelerated to a more tactical speed of M0.88. The target aircraft was clearly visible on the radar ahead and 1,640ft above, cruising at M0.7.

The first attack was made head-on with a Raytheon AIM-120 AMRAAM. The engagement zones, including the no-escape zones, were shown on the display ahead of each aircraft. The first missile was "fired" at an unrealistically close range of 15km (9 miles) and the aircraft was turned rapidly away from the target before reversing into a hard turn to astern of the target for a Raytheon AIM-9L Sidewinder shot. Changing missile types was a single switch action on the stick top that also reconfigured the HUD and radar. Pulling up towards the target at 4g/10°a (angle of attack) the missile attack was easy (against a quiescent enemy), but seeing the small Gripen with a commendably smoke-free exhaust was rather more difficult.
空戰模擬:在最大軍推下,測試機爬升至13,120英呎(約4,000公尺)高度並加速至0.88馬赫,對著距離約15 公里外,高度14,760英呎(約45000公尺),時速約0.7馬赫的目標發動模擬AIM-120攻擊,接著急轉遠離,再接著轉回發動第二波模擬AIM -9L攻擊。

Gun attacks

Finally, the aircraft were closed for gun attacks (although only the single-seaters are equipped with a 27mm Mauser cannon) and the target ordered to manoeuvre. At this stage, the fuel remaining had decreased to 105% of internal fuel. At take-off mass, the aircraft was limited to 5g by the full external fuel tank. As the tank emptied below 200kg, the g-limit started to increase progressively to a maximum of 7.5g of the FCS standard tested. The two-seater's limit will be increased to 8.5g in the near future. As the gun tracking exercise began the g-limit was 7g. The g and incidence limits are regulated automatically by the FCS. A tracking exercise is a good test of an FCS since very small and precise changes of flightpath are necessary to keep the gun-aiming reference over the target - particularly when it is manoeuvring. An accurate sight picture was easy to maintain.
自動機炮瞄準模式測試:
# 此時燃料剩下約2,395公斤。
# JAS-39B在一具1,100 L機腹油箱滿載 + 2枚SRAAM時,G上限便已經落至5G(再一次可看出輕型戰機的性能限制~Rafale在重裝構型下,G限仍可達5.5G)。
# 當外掛機腹油箱內燃料降至200公斤以下時,當時JAS-39B的FCS G上限為7.5g,之後預定提高至8.5G。
# 當時自動機炮瞄準模式的操作G限為7G。

The final exercise with the other Gripen was to join for close formation in echelon starboard, echelon port and line astern, the latter being a reasonable simulation of that used for air-to-air refuelling. The lead aircraft flew through weaving manoeuvres of up to 90° of bank and 2-3g. The combination of the excellent flight control laws and rapid engine thrust response made position keeping straightforward.

The formation separated and, for the next few minutes, the other aircraft's progress back to the airfield could be monitored on the datalink display. The evaluation aircraft was taken to 26,230ft for a handling and performance examination. Some performance data normally given in a flight report is classified and was not recorded. Subjectively, the Gripen's performance is comparable to its peer group, with roll acceleration and roll rate perhaps superior.

The displays include many useful features. Two in particular were used at high level. The first is economical cruise speed shown on the HUD and HDD speed scales when selected by the pilot. The second is the corner velocity where the FCS will change from g-limiting to angle-of-attack limiting, which is always shown on the same speed scales. In this case, with 92% fuel remaining, the economical cruise speed was M0.78M/313kt and the corner velocity was M0.9, at which speed the airframe limits were 20°a and 7.3g. The HUD, with several differences from other Western displays, was clear and easy to interpret.
作者認為JAS-39的滾轉性能應該較其競爭同儕更勝一籌。
在剩餘92%內載燃料狀況下,JAS-39的經濟巡航時速為0.78馬赫/313節,corner speed則為0.9馬赫~在此速度下,戰機的攻角限與g限分別為20度與7.3G。

A steady climb and level-off, followed by level turns at 45í angle-of-bank (AOB), were easy to fly accurately. At full dry thrust (below the optimum speed), the aircraft comfortably sustained a 60° AOB turn. As the first FCS test at a limiting condition, the aircraft was accelerated to M0.8 and then aggressively turned, using a fairly rapid application of full back stick and full reheat. The aircraft was limited positively at 19°a/4.5g without overshooting. The final test at this height was to accelerate in full reheat to M0.95 and then close the throttle rapidly to idle while simultaneously extending the airbrakes. There were no trim changes and the aircraft remained easy to fly accurately.

The aggressive handling tests continued at 6,560ft, where the aircraft (with 73% fuel) flying at M0.9 was put into a full back stick turn, using maximum reheat. The FCS limited the aircraft to 7.5g at 9°a. The turn rate was impressive and, although there was some speed decrease, it was not excessive. The turn was repeated using less thrust and the stick held fully back so that, as the airspeed decreased, the FCS changed from g to incidence limiting. This occurred smoothly at 335kt. The g and incidence limits will be increased to 26°a and 8.5g (the single-seat aircraft will be limited to 9g) by updated FCS software due for release next year.
在高度6,560英呎(約 2,000公尺)處,時速0.90馬赫,剩餘73%內載燃料狀況下,戰機於後燃全開進行急轉彎時,當時其FCS對戰機的攻角限與g限分別為9度與 7.5G;到了2001年時,JAS-39的FCS在經改版後,將對戰機的攻角限與g限分別提高至26度與8.5(雙座機)至9.0(單座機)G。

Full stick rolls through 360° were made at 1g, 3g and 5g at M0.8. The aircraft's roll acceleration and roll rate were unusually and impressively rapid at 1g and 3g, subjectively more than 200°/s. The roll rate decreased somewhat at 5g/7°a, but was still good. The position of the airbrakes can adversely affect directional stability of an aircraft, even if it does have an FCS, so a 360° roll was made with the airbrakes extended. There was no noticeable change in roll rate or acceleration. Rolls were not made at the incidence limit since the FCS software used during this flight was not cleared for rapid rolling at full back stick (ie, carefree handling). This restriction will be lifted with the next software release.
在時速0.8馬赫,JAS-39於1至3G負載下的滾轉率大於每秒200度。

While still at 6,560ft, the aircraft was slowed in level flight with the undercarriage down to the minimum approved speed of 124kt; this equated to 17.5°a with 61% of fuel remaining. With the undercarriage down, the FCS introduces pseudo longitudinal static stability and it was necessary to trim the aircraft in pitch as one would do with a conventional aircraft. This is an excellent feature since the out-of-trim forces give a good tactile cue if the aircraft's speed varies from that trimmed for. This characteristic is a valuable aid during a high workload instrument approach. Handling during turns with the undercarriage down remained easy and pleasant and the aircraft could be flown accurately without difficulty. In this configuration, the incidence limit remains 19°a and continues to be automatically controlled, but a 3g limit must be observed by the pilot.
在高度6,560英呎(約2,000公尺)處,剩餘61%內載燃料狀況下,戰機於飛行攻角17.5度,起落架放下時的最低允許時速為124節。

即使放下起落架,JAS-39的飛行操控依然十分精準輕鬆,此時戰機FCS會自動對飛行攻角設限(小於19度),但是飛行員必需自行注意安全G限~3G。

It may be a surprise that remaining fuel quantity is quoted in percentage of full internal fuel, the measure used by the Swedish air force. I found this unusual system reasonably practical and fairly logical for a fighter that will almost always be completely refuelled. The Gripen, however, does not have a fuel-flow gauge, a facility I would miss in service, particularly during long sorties close to the range limit. To counter this argument, the navigation system continually calculates the fuel to complete the planned mission, perhaps rendering a flow meter desirable rather than essential.

The final part of the evaluation was at low level, 656ft, at a typical low-level cruise speed of 450kt. The conditions were clear, but there was moderate turbulence. The ride quality was good and it remained easy to fly in straight flight and in turns to 3.5g. The view from the cockpit is excellent and the environment comfortable. The HUD has a declutter mode to remove the less relevant symbology while at low level. A simulated pop-up rocket attack was made, turning left towards a small island to test the aircraft's tracking qualities through the low-level turbulence. These were found to be good.
JAS-39在高度656呎(約200公尺)處的巡航時速可達450節,在中度低空亂流下,其操控依然十分平穩,座艙環境也十分舒適。

We returned to Linköping, initially for an instrument approach, using the Tactical Instrument Landing System (TILS). From the pilot's point of view, this unique-to-Sweden system is much like a standard ILS with the localiser offset 3í from the runway centreline. The first part of the approach was made to a standard initial point using the aircraft's navigation system. Thereafter, the aircraft's receiver used the localiser and glidepath signals to drive a flight director in the HUD to guide the aircraft to a decision height of 197ft.

In addition, the computer used the localiser and glidepath to calculate that there was a small error in the navigation computer position and inserted a fix. The approach to the tactical instrument landing system initial point (TILS IP) was made at 297kt, reducing to the normal approach incidence of 12ía (154kt) on the glidepath. The autothrottle held the approach incidence within ±1° despite the moderate turbulence. The TILS provided accurate guidance to the decision height, at which point the aircraft was turned to the right to align with the runway and a touch-and-go made.

Strong ground effect

Three more circuits were flown. The final two used 14°a on the final approach, the incidence used for road landings. This reduced touchdown speed by 16kt. The aircraft was easy to fly around the visual pattern and could be placed accurately on the runway. In common with other delta aircraft, there was a strong ground effect when the aircraft was at a height of about one wingspan above the runway. This flattered the pilot by making each touchdown quite gentle, even when a firm landing - rather than a runway consuming float - was required. Clearly, with a little experience, accurate touchdowns at a good sink rate would be achieved consistently and without difficulty. The final landing used maximum brake effort from a 14ía approach. The brakes have touchdown protection, so the wheelbrakes were fully applied before landing. The landing distance was commendably short although the wheelbrakes snatched quite heavily just after touchdown, perhaps because the touchdown was not hard enough, and once again when reapplied during the landing roll. The Gripen is equipped with brakes on the nosewheels as well as the main wheels, the operation of which was transparent.

The final landing was made with 19% fuel remaining after a flight time of 1h 10min.
在經過一小時十分的飛試後,測試機還剩下19%的內載燃料(換言之,其約用掉2,700公斤燃料)~JAS-39於輕裝作戰狀況下,只靠內載燃料的滯空時間約為一小時左右。

In summary, the Gripen was easy and very pleasant to fly. It has good performance and provides a comfortable working environment. The high level of utility systems automation has been well thought through and frees the pilot to get on with operational tasks. During this flight the aircraft and engine performed faultlessly. Although the tests of the operational systems were of necessity superficial, they served to show that the aircraft has a logically organised, competent and sophisticated weapon system that will allow use in the fighter, attack and reconnaissance roles. In particular, the datalinks are fully integrated into the weapon system and multiply the effectiveness of the aircraft.


十二、實際軍演與異種機對抗表現:

http://www.gripen.com/download/18.1ab11b0fac3ac8aec7fff2023/gripen_news_2004_01.pdf

“During past international exercises, Gripen has been very competitive during close-in combat against foreign aircraft such as the F-16 and F-18. I don’t want to make any snap judgements, because it was a limited number of contacts and I don’t have all exercise parameters. However, during beyond visual range engagements, we can definitely say that the radar, datalink, electronic warfare suite and man-machine interface (cockpit design, display symbology etc.) of the Gripen, gave its pilots a clear upper-hand. Their ‘information advantage’ and situational awareness meant that they could employ Gripen’s weapon systems in a more optimal way than their foreign counterparts.”

“Although some aircraft flown in these exercises may have had a slightly better thrust-to-weight ratio than our
aircraft, Gripens still managed to get behind the F-16s to make use of both their IR-missiles and guns. The small visual signature and excellent agility of the Gripen proved to be a considerable advantage in a dogfight.”


http://www.gripen.com/download/18.d90453fe249f2d3d7fff2804/gripen_news_2004_02.pdf

“We flew several of the Norwegian pilots in our dual seat and they were very impressed with the cockpit displays – especially the tactical screen with the map – and the level of situational awareness that it gives you in combat. I think they understood that we could get so much more out of our jets. It’s a different generation.“

“They thought that a Gripen was pretty similar to an F-16,” said an SwAF officer, “they thought, they’re about the same size, they both have one engine – but they were wrong. In combat we out-turned them in many engagements. I give the credit for that to our maneuver load limiter which manages the ‘g’load on the aircraft all the time and lets you concentrate on flying. In an F-16 you always have to keep one eye on the g-meter so as not to overstress the jet. In the Gripen you just pull the stick back into your stomach and it gives you everything. Gripen also has great pitch authority which allows us to get the nose higher and launch first.”.


http://www.f-16.net/f-16_forum_viewtopic-t-1029-start-45.html

1. "During past international exercises, Gripen has been very competetive during close in combat against foreign aircraft such as the F-16 and F/A-18.

2. During BVR engagements we can definitely say that the radar, datalink, electronic, warfare suit and MMI of the Gripen gave its pilots a clear upper-hand. Their information advantage and SI meant they could employ Gripen's weapon systems in a more optimal way than their foregin counterparts.

3. Although some aircraft flown in these exercises may have had a slightly better thrust-to-weight ratio than our aircraft, Gripens still managed to get behind the F-16's to make use of the IR-missiles and guns. The small visual signature and excellent agility of the Gripen proved to be a considerable advantage in a dogfight."

4. "We flew several of the Norweigan pilots in our dual seat and they were very impressed with the cockpit displays - especially the tactical screen with the map - and the level of situational awareness that it gives you in combat. I think they understood that we could get so much more out of our jets. It's a different generation.

5. They thought that a Gripen was pretty similar to an F-16, said an SwAF officer, they thought they were about the same size, they both have one engine-but they were wrong. In combat we out-turned them in many engagements.


http://old.airplanes.com/forums/showthread.php3?threadid=1404

1. Gripen is doing very well against adversarys like the F-16 and F/A-18. They had flown against Norweigan, Finnish and U.S pilots.

2. Gripen has a very advanced aerodynamic design and that it has very low drag in level flight aswell as in manouvers, and this completely made up for the Gripens lower T/W ratio.

3. If an F-16 and Gripen both would excecute a hard 9G turn, the F-16 would lose alot more speed than the Gripen.

4. When in dogfights against Finnish F/A-18's the Gripen proved to be a very superior adversary. The Finnish pilots found that their Hornet simply couldn't compete against the highly manouverble Gripen.

5. The Gripen proved itself superior in the BVR role aswell. The F/A-18 pilots never picked up the small Gripen fighter on their radar before they were defeated by simulated AMRAAM shots. The Datalink proved itself very well in these engagements.


IDR, 2005 12,JAS-39A近年來參加NATO聯合軍演與行動的狀況與表現:

優點:
1. 戰機間資料鏈系統:這套類似F-22A所用,瑞典獨門的絕技的確是很有力的戰力乘數器,一名瑞典空軍飛官表示,這套四機共用系統在打群架時特別有效:只要 一架JAS-39的雷達盯住目標,其它三架戰機飛官便可以完全分享掌握目標狀況,同時把全部精神心力擺在如何發揮戰機機動性,包抄截殺目標之上~在去年十 月的一次北約軍演中,四架JAS-39A便充分發揮此一能力,把攔路的八架荷蘭F-16與芬蘭F-18(模擬MIG-29與Su-27)全數掃蕩,成功完 成替26架NATO攻擊機群開路與護航的工作。

2. PS-05A雷達:能力與模式功能與APG-66V2類似,但是有著更長的目標搜索追蹤距離,能在十分遠的視距外接戰目標。

3. 戰機:整體飛行性能和F-16相較可說各有千秋(F-16有明顯較佳的剩餘推力與加速性能,在持續轉彎與機動的能量補充上也小勝一籌;而JAS-39A則享有明顯勝出的低翼負荷,瞬間轉彎率,以及機首指向能力),但是因為機體更小,在狗戰時往往因此佔到上風。

缺憾:
1. 油少腿短,且身為本土點防禦戰機出身的JAS-39A又沒有空中加油能力,因此在軍演與行動中,其往往是得最早返航者。

2. 未配備LINK-16,使得JAS-39A只能透過無線電語音和NATO的AWACS取得有限資訊交流,難以完全融入聯合行動中。

3. 敵我識別機制與北約不共通:這點更是糟糕,使得JAS-39A得完全靠NATO的AWACS無線電語音說明來確認那些目標是敵,那些目標是友,自主作戰能力大失。

4. 瑞典空軍準備在JAS-39C/D上將前述缺失全部改正。


GRIPEN 2006阿拉斯加紅旗軍演成果簡評:

1. 靠著12名飛官與35名地勤,七架JAS-39C/D在這次為期11天的紅旗軍演中出擊221架次,總計累積飛行時數340飛行小時.

2. 在原本安排的225次架次任務中,僅四次遭到取消,且均非戰機本身問題(三次因天候過於惡劣,一次因攜帶莢艙發生故障).

3. 在整個軍演期間,JAS-39C/D發射了16枚LGB,1,000多發的機炮彈藥,以及1,100發的熱燄彈,並且曾成功驗證一架戰機投射LGB,再交由另一架戰機進行導引的欺敵戰術.

4. 瑞典空軍方面聲稱,GRIPEN非常狹小的雷達截面積在軍演中對空中與地面的紅軍對手均構成偵測上的相當挑戰,所配備的預警電戰系統的表現亦卓絕出眾~在整場軍演期間,紅軍方完全無法突破其電戰反制。

5. GRIPEN四機聯網作戰體系的效能絕佳,瑞典飛官聲稱此一系統替GRIPEN提供的SA之詳實完整,要比老美空軍E-3C AWACS所提供者還猶有過之,使得GRIPEN在這場多國聯合紅旗軍演中,一直穩居SA制高點。

6. 在整場軍演期間,GRIPEN牢牢掌握住對手地面防空系統陣地(包括S300模擬陣地在內)的方位與變動,從而得以屢次成功突防,達成以LGB精準攻擊預定攻擊目標的使命。

7. 美國空軍方面坦承,在經過這場軍演洗禮後,其得重新評估瑞典空軍的實力與本事。


http://www.gripen.com/en/MediaRelations/SuccessStories/070918_hungary.htm

匈牙利空軍Gripen的近況,其中最有趣的部份當是在其於今年(2007)五月間在義大利舉行的北約春旗軍演中所獲得的心得經驗與成果談。

在這次軍演中,負責扮演第三世界國家紅軍方的匈牙利空軍在缺乏AWACS, CGI, Datalink乃至AIM-120模擬的情況下,匈牙利空軍仍在”註定的全滅”前取得八至十架的藍軍方戰機模擬擊落成果~其中甚至包括一架義大利空軍的颱風戰機。

匈 牙利飛官受訪時表示:”即使在沒有Jammer提供電子干擾防護,無論是在雷達上還是肉眼前,Gripen都是教人難以察覺的存在~在本次軍演中,便曾有 一架F-16於完全未發現第二架Gripen的情況下轉進兩架匈牙利空軍Gripen編隊間,結果狠狠挨上一計模擬Fox2。”

匈牙利飛 官也對自家戰機雷達軍演中的性能表現給予極大的贊賞與肯定:”不僅看得遠,還能在敵方機群進行緊密編隊時清楚區分識別出每一架敵機,更難能可貴的是,在整 場軍演期間,藍軍方的Jamming措施手段幾乎不對我方戰機雷達的作業造成任何影響~這一點把很多人都給嚇一跳.......”

不過有一點應該補充的是:出於某些因素考慮,這場軍演將藍紅軍雙方進行BVR對抗時的飛行機動上限訂為3G~對於向來以中高空超音速機動性能優勢為主要賣點的颱風戰機而言,此舉應當會讓其吃上一定程度的虧。



十三、未來前景:

瑞 典空軍最初打算採購300至400架Gripen, 然而冷戰結束之後, 其需求先是降至204架, 接著在21世紀初定案的未來建軍計畫中,瑞典空軍未來有人戰機機隊規模需求更是劇減至100架上下......截至2007年年底時,瑞典空軍戰機中隊數 量業已從1995年時的12支大幅縮減為4支前線實戰中隊與2支訓練中隊。

在瑞典空軍所訂購的120架JAS-39A/B與84架JAS -39C/D中,自1993年至2007年間計有3架JAS-39A與1架JAS-39C量產型戰機失事墜毀(再加上一號原型機於1988年失事),另外 匈牙利空軍與捷克空軍則分別租借走14架JAS-39A/B(升級改良為JAS-39EBS Hu構型)與14架JAS-39C/D,並均打算在租約期滿之後完全買斷,因此在2007年年底時,瑞典空軍所擁有的Gripen機隊規模為103架 JAS-39A/B(其中部分已進入除役封存狀態)與69架JAS-39C/D。

而在2007年九月間,瑞典政府正式批准一份價值約41 億瑞典幣(約相當於6.34億美金)的合約,將現有31架JAS-39A/B升級為JAS-39C/D構型,預計到了2013年改裝工程結束時,瑞典空軍 將由75架JAS-39C與25架JAS-39D構成其全部有人戰機主力,餘下的JAS-39A/B機將全面除役封存並對外求售。

南非方面採購了19架JAS-39C與9架JAS-39D的南非版,預定於2012年之後淘汰所有現役法製機種,正式成為該國空軍的唯一主力作戰機種。

泰 國方面則於2007年10月17日正式宣佈將斥資約11億美金以購進12架JAS-39C/D(含備用組件,武器,與人員訓練,預定用來汰換全部現役F- 5A/B戰機,以及部份現役的F-5E戰機)和2架Erieye空中預警機,並分為兩批次(均為6架戰機以及1架預警機)接收:第一批將於2008至 2012年間運交,第二批則預定將在2013至2017年間運交。

2008年2月11日,泰國空軍與瑞典FMVs正式簽訂首份價達190 億泰銖(約相當於5億9468萬美金,其中購買戰機部分的金額據稱約為3億1000多萬美金)的合約,將自2011年起以6架JAS-39(2架單座C型 與4架雙座D型),1架Saab 340 Erieye空中預警機,以及1架Saab 340運輸/訓練機來取代部分現役F-5機隊;除了飛機採購部份外,這份合約還包括相關後勤補保維修體系之建立,飛官與地勤人員之培養訓練,以及模擬器之 引進。

紳寶集團對於Gripen未來的外銷前景頗有信心,認為其全壽命週期的成本耗費要比RAFALE與EF-2000便宜50%以上, 且在F-35聯合風暴來襲前,還有近十年的時間可以努力打拼~根據Gripen計畫負責人於2006年的法茵堡航展中受訪時表示,其對在未來十年間外銷 200架Gripen戰機有著相當審慎樂觀的期待。

目前其正在努力爭取的客戶有:

1. 斯洛伐克:在蒙捷克空軍正式採用之後, Gripen入主該國的機會也大有提昇。

2. 瑞士:有20架取代F-5E/F戰機的訂單需求,不過該國最近決定大砍國防預算,因此可能在最後什麼都不買的狀況下直接淘汰其現役F-5E/F。

3. 其它有潛力的客戶:挪威,丹麥,羅馬尼亞,保加利亞,印度,與沙烏地阿拉伯等中東數國。

沒有留言: